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ABSTRACT 

High energy laser weapons have been evolving progressively in recent years. These 

weapons deliver high-intensity beams to a target and can instantly destroy or burn it.  

They may cause potential threats to Navy ships, computer networks, guided missiles, and 

satellites in orbit.  In order to reduce our military’s vulnerability to high energy laser 

weapons, one possible countermeasure is to rotate or rock the object itself when it is hit 

by the laser beam.  

The main purpose of this thesis is to investigate the relationship between the 

speed of a rotating/dithering laser beam and the maximum temperature rise induced by 

the laser beam on a finite solid.  We have investigated extensively the numerical 

solutions for the transient temperature rise in both one-dimensional (1-D) and two-

dimensional (2-D) finite solids due to rotating/dithering laser beams.  Our mathematical 

approaches include the eigenfunction expansion method, the Crank-Nicolson method, the 

Fast Fourier Transform method, and COMSOL for 1-D and 2-D cases.  We have 

employed COMSOL to solve the 3-D nonhomogeneous heat equation.  

This thesis provides the first study that we know of on the effect of 

rotating/dithering laser beams on a finite target.  Our results are consistent with previous 

analytical studies on semi-infinite regions.  The quantitative relationship between 

maximum temperature rise and laser beam rotating speed, which is presented in this 

thesis, can be used as a general guide for adjusting the speed of rotation of the target in 

order to prevent the maximum temperature rise from reaching the melting point of the 

target. 
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I. INTRODUCTION  

Laser-induced heating has been widely studied [1, 2, 3, 4]. Most of these studies 

are restricted to a moving/scanning laser beam.  Recently, the effect of a 

rotating/dithering laser beam on the temperature rise of a semi-infinite domain has been 

studied [5].  However, in many realistic problems the geometry of an object is finite. So, 

in this thesis, we extend the previous studies to a finite domain and pinpoint the effect of 

a rotating/dithering laser beam on the temperature rise of a finite object. 

The laser beam can be considered as a moving disc heat source with a Gaussian 

distribution of heat intensity.  The analytical solutions can be used to determine the 

temperature rise distribution in and around the laser beam heat source on the work 

surface as well as with respect to depth at all domains close to the heat source.  The 

analytical and numerical solutions from mathematical approaches provide a better 

appreciation of the physical relationships between the relevant laser parameters and the 

thermal properties of the work piece. 

The main purpose of this thesis is to investigate the relationship between the 

rotating/dithering laser beam speed and the maximum temperature rise induced by the 

laser beam on a finite solid.  In Chapters II and III, we present the analytical and 

numerical methods for obtaining a transient temperature distribution with various 

methods, which include the eigenfunction expansion method, the Crank-Nicolson method 

and the Fast Fourier Transform method (FFT).  In Chapters III and IV, numerical 

solutions for one-dimensional (1-D) and two-dimensional (2-D) nonhomogeneous heat 

equations from MATALB and COMSOL are given.  We compare different methods and 

investigate the relative errors of numerical solutions obtained in MATLAB and 

COMSOL.  In Chapter V, we have employed COMSOL to solve the three-dimensional 

(3-D) problem. 

The objective of this thesis is to provide insights on developing objects of 

adequate rotating speed against direct energy weapons (DEWs).  The simulation results, 

especially the quantitative relationship between maximum temperature rise and 
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rotating/dithering speed, can be used as a blueprint to adjust the speed of rotation of the 

target against DEWs to prevent the temperature rise from reaching the melting point of 

the target.  
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II. ANALYTICAL SOLUTION FOR A TRANSIENT 
TEMPERATURE DISTRIBUTION DUE TO A ROTATING OR 

DITHERING LASER BEAM IN A FINITE SOLID: EIGEN-
FUNCTION EXPANSION METHOD 

Consider a laser beam source used to heat a 1-D finite rod.  A 1-D heat equation 

can be written as [1] 

2

2
( , )      0T

T x
T

u u
q x t x L

t x K

 
   

 
                                                       (Eq. 2.1) 

where ( , )u x t  is the temperature rise with respect to the ambient temperature, ( , )q x t is 

the heat source created by laser beam, T  is the thermal diffusivity with units 
2m

s

 
 
 

 and 

TK  is the thermal conductivity with units
W

m k
 
  

.  

Two assumptions are made in this analytical approach.  First, heat losses by 

radiation are negligible as compared to the intensity of the incident laser beam.  Second, 

thermal properties, such as thermal conductivity TK and thermal diffusivity T , are 

considered constant and evaluated at an average temperature.  The second assumption 

makes this heat equation a linear problem.  

For this 1-D rod, we impose insulating boundary conditions (BCs) 

(0, ) ( , ) 0x

u u
t L t

x x

 
 

 
, which assumes that no energy escapes into the air at the 

air/material interface. This is a good approximation for most materials under 

consideration, as heat flow by conduction through the material far exceeds the heat loss 

by radiation or convection at the air/material interface. 

The initial condition (IC) is ( ,0) 0u x  , which reflects the fact that there is no 

temperature rise with respect to the ambient temperature before the laser hits the rod. 
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The heat source ( , )q x t is considered as a laser beam of temporal continuous wave 

(CW) and spatially modeled by a Gaussian distribution, which corresponds to the 

theoretical 00TEM  mode of the laser.  The term TEM comes from the acronym 

“transverse electromagnetic mode.”  The subscript of TEM specifies the number of nodes 

generated by a slight misalignment of the mirrors located in the laser cavity [1, 6].  Figure 

1 shows some transverse modes and the simplest modes,  00TEM  is used in this thesis; 

the heat source generated by the laser beam is a Gaussian distribution. 

00TEM

01TEM

Node

10TEM

Node
Node

Node

11TEM

00TEM

01TEM

Node

10TEM

Node
Node

Node

11TEM
 

Figure 1.   Different transversal modes in a laser spot [From 1] 

For a dithering laser beam in 00TEM  mode, the heat source ( , ) q x t can be written 

as 

2
2

0

( ( ))

0( , )
c

k
x x t

rq x t I e
 

 , 0

2
( ) sinc

t
x t x a

T


  ,  0 2

xL
x   
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Here, ( )cx t is the position of the dithering Gaussian beam and 0x  is the initial 

position of the laser beam. In the above formula, the center point of the rod is picked. 0r  

is the effective radius of the laser beam.  0I  is the intensity of the laser beam at the center 

of the heat spot after it is absorbed by the material. k is a constant used for the Gaussian 

model [2].  Figure 2 depicts a dithering laser beam shining on a 1-D rod.  

xL
2

xL0

Dithering Laser Beam
2

2
0

( ( ))

0( , )
c

k
x x t

rq x t I e
 



2
xL

a
2

xL
a

@ 0t  @
4

T
t 3

@
4

T
t 

 

Figure 2.   Dithering laser beam on a 1-D rod 

We will apply the eignefunction expansion method to solve this 1-D heat equation.  

Generally speaking, the method of eigenfunction expansions consists of building up the 

solution of a boundary value problem as a sum of eigenfunctions of a Helmholtz problem.  

To begin with, consider a simple 1-D mathematical model in the Cartesian coordinate for 

solving the linear and homogeneous heat equation with initial conditions (ICs) and 

boundary Conditions (BCs) described above where no heat source ( , )q x t  is involved, the 

1-D heat equation becomes: 

2 
u

uTt


 


.   
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To make the derivation process simpler, set 1T  . The method of separation of 

variables (SOV) is applied in solving this homogeneous heat equation [1].  We will move 

on to a nonhomogeneous solution with heat source ( , )q x t  by applying the method of 

eigenfunction expansion.    

It is intuitional that the temperature u  is a function of position and time, 

therefore  ( , )u u x t .  In the method of SOV, we attempt to determine solutions in the 

product form,  

( , ) ( ) ( )u x t X x T t                                                                                     (Eq. 2.2) 

where ( )X x  is a function of space x alone and T( )t is a function of time t  alone.  This 

SOV reduces a partial differential equation (PDE) to several ordinary differential 

equations (ODEs). 

For a heat equation without heat source: 

( , ) 2 ( , )u x t u x t
t

 


                                                                                 (Eq. 2.3) 

We substitute the assumed product form of Eq. 2.2 into this heat equation and get 

( ) '( ) "( ) ( )X x T t X x T t  

We can actually “separate variables” by dividing both sides of this equation by 

( ) ( )X x T t to obtain 

' "T X

T X
                                                                                                     (Eq. 2.4) 

Now the variables have been “separated” in the sense that the left-hand side of the 

equation is only a function of time t  and the right-hand side function is a function of 

space x .  Since the variables t  and x  are independent of each other, the only way to get 

equality is to have the functions on both sides of (Eq. 2.4) constant and equal.  Thus, 

' "T X

T X
    
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where   is an arbitrary constant called the separation constant.  Later we will explain 

why this separation constant is a negative value with >0 .  Since we treat the laser beam 

as a heat source, and there is no heat source involved yet in solving the homogeneous 

equation, it is intuitive that the temperature decreases as a function of time, so 

'( )
0

( )

T t

T t
                                                                                               (Eq. 2.5) 

(Eq. 2.5) is a first-order linear homogeneous differential equation with constant 

coefficient.  This ODE can be solved directly by seeking exponential solutions,  rtT e . 

By substitution, the characteristic polynomial is  r   .  Therefore, the general solution 

of (Eq. 2.5) is  

( ) tT t ce                                                                                               (Eq. 2.6) 

Where c is an arbitrary constant.  The time-dependent solution is a simple 

exponential.  Recall that   is the separation constant, which for the moment is arbitrary; 

however, eventually we will find out that only certain values of   are allowable.  

If 0  , the solution exponentially decays as t  increases because of the negative sign; 

if 0  , the solution exponentially increases; if 0  , the solution remains constant in 

time.  Therefore, 0  gives a reasonable solution since temperature decreases as time 

goes by. 

Our next move is to consider the right-hand side of (Eq. 2.4): 

"  ( 0)X
X

                                                                                         (Eq. 2.7) 

This is a second-order, constant coefficient homogeneous ODE, substituting 

( ) rxX x e  into (Eq. 2.7) yields the characteristic equation 2 0r   .  
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Since 0  , exponential solutions have imaginary exponents, ( ) i xX x e  .  In 

this case, the solution oscillates. Recalling Euler’s formula, cos( ) sin( )ie i    , so 

the choices  cos x and  sin x  are made to get the desired real number solutions.  

The general solution for (Eq. 2.7) is: 

( ) cos( ) sin( )X x A x B x                                                            (Eq. 2.8) 

This is an arbitrary linear combination of two independent solutions where A and 

B are just arbitrary constants. 

Both ends of the 1-D rod are insulated; the BCs on x  direction states: 

0   and   0
0

u u
X Xx x Lx

  
  

 

This is equivalent to 

'(0) '( )0   and   0xX X L                                                                            (BCs) 

The derivative of (Eq. 2.8) is  

sin cos'( ) ( ) ( )X x A x B x                                                  (Eq. 2.9) 

We can plug the first BC '(0) 0X   into (Eq. 2.9) to obtain the solution 

'(0) 0X   which implies that  B=0.  So ( )X x is a function of cosine only since the sine 

term vanishes.  Another BC implies that sin( ) 0xA L  .  To avoid the trivial 

solution (0) 0X  , we take  1A  , which forces sin( ) 0xL  .  Since the sin 

function vanishes at the integer multiples of  , we conclude that  

,   0, 1, 2,.......n
x

n
n
L

        

and so  



 9

( ) cos( ),    0,1,2,.......  n
x

n
n xX X x
L
    

Note that for negative values of n , we obtain the same solution; hence, solutions 

corresponding to negative 'n s may be discarded without loss. These ( )n xX  are from the 

eigenfunction of the 1-D heat equation. We now go back to (Eq. 2.6) and substitute 

2

x

n

L


 

  
 

to get  

2

( ) x
n n

n

L
t

T t c e

 
 
 
  
 


  

Now we return to (Eq. 2.1).  We solve this problem using the method of 

eigenfunction expansion, and hence start by assuming that u has an expansion in terms of 

the eigenfunctions ( )n xX .  Thus,  

 exp

( , ) ( ) cos( )n
n x

eigenfunction ansion

n x
u x t u t

L





                                                             (Eq. 2.10) 

where the coefficients ( )nu t  are functions of t .  We now expand q  as 

( , ) ( ) ( )n n
n

q x t q t X x                                                                           (Eq. 2.11) 

After substituting (Eq. 2.10) and (Eq. 2.11) into the 1-D inhomogeneous heat 

equation (Eq. 2.1), we obtain  

2

( ) ( ) ('( ) ( ) ( ) )T
T n n

x T
i n n n

n n n

n
u t q t

L K
X x x xu t X X


  
  
   

    . 

This yields the differential equation of the coefficients ( )nu t , 

2

'( ) ( ) ( )T
n T n n

x T

n
u t u t q t

L K


  
    
   

                                                      (Eq. 2.12) 
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The initial condition for this equation is ( 0) 0nu t   . 

Now the problem is to find ( )nq t . We can use the property of orthogonality of 

eigenfunctions. By multiplying eigenfunction ( )nX x which is cos( )
x

n x
L


and then 

integrating on both sides of Eq. 2.11, we get 

2

0 0 0

0

( , ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 cos( )

                           ( ) ( )
2 2

x x x

x

L L L

n n n n n n
n

L

x x
n n

q x t X x dx q t X x X x dx q t X x dx

n x
L L

q t dx q t



  


 

  



  

Therefore, 

2
2

0

( ( ))

0

0 0

2 2
( ) ( , ) ( ) cos( )

x x
c

kL L x x t
r

n n
x x x

n x
q t q x t X x dx I e dx

L L L

 

    

To obtain ( )nq t is very expansive because the ( )cx x t term makes the integration 

time-dependent. Here we use change of variables to make this calculation easier, 




( )cx x x t

d x dx

 


 

thus, 


 

2

2
0

( )

0

( )

2
( ) cos( ( ( )))

x c

c

kL X t x
r

n c
x xX t

n
q t I e x x t d x

L L

 



   

We introduce a constant d , which is the effective radius of the laser beam, and 

 d is about 3 to 5 times of the standard deviation   of
 2

2
0

0 
k

x
rI e



. Instead of taking integral 

from  ( )cx x t  to ( )x cL x t , using the assumption above to change the integral 

from x d   to x d , since the laser beam is a very concentrated Gaussian distribution, 

so taking integral with respect to a large range is unnecessary; we only need to integrate 

within the effective laser range which is from d  to d .  Figure 3 shows the effective 

radius of the laser beam. 
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0I

d d x0



 2

2
0

0

k
x

rI e


 

Figure 3.   Effective radius of laser beam, d as a multiple of standard deviation   

We also recall that the trigonometry formula of cosine in sum and difference 

formula, 

cos( ) cos( )cos( ) sin( )sin( )u v u v u v    

then ( )nq t becomes 

  

  

2

2
0

2

2
0

0

0

( )2
( ) cos( ) cos( )

( )2
        sin( ) sin( )

kd x
r c

n
x x xd

kd x
r c

x x xd

n x tn x
q t I e d x

L L L

n x tn x
I e d x

L L L













 
 
 
 
 
 
 
 




 

The integral in the second term is zero since the integrand function is an odd 

function and the integration interval is ,  d d . Thus, ( )nq t  simplifies to 

  
2

2
0

0

( )2
( ) cos( ) cos( )

kd x
r c

n
x x xd

n x tn x
q t I e d x

L L L





 
 
 
 
  

Once ( )nq t  is found, we have to compute ( )nu t using the method of integrating 

factor. 

Recall the method of integrating factor in solving first-order ODE: 
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'( ) ( ) ( )y t a y t r t    

Here a  is a constant and ( )r t  is a function of time.  The first step of integrating 

factor is to multiply ate on both sides of this equation: 

'( ) ( ) ( )at ate y t a y t e r t        

This equation is equivalent to  

( ) ( )d
y t

dt
at ate e r t      

We can integrate on both sides of the equation and get 

0

( )  (0) ( )
t

t

y t dsat ase y e r s


     

where  s  is a dummy variable.  We multiply ate to obtain  

0

( )  (0) ( )
t

t

y t dtat at aty e e e r t


                                     

Now, we can compute ( )nu t  of Eq. 2.12 use the integrating factor method to get 

2 2

2 2

2 2

2

0

    '( ) ( ) ( )

( ) ( )

( ) ( )

( )

T T
x x

T T
x x

T T
x x

T
n T n n

x T

n n
t t

L L T
n n

T

n ntt s
L L T

n n
T

n n
t s

L L T
n

T

n
u t u t q t

L K

d
e u t e q t

d t K

e u t e q s d s
K

u t e e q
K

  

  

  









   
   
   

   
   
   

   
    

   

  
    
   

 
  
 
 

 

  



0

( )
t

n s d s
 
 
 
 


 



 13

where the initial condition (0)nu has been applied. 

Once ( )nu t is calculated, we can find ( , ) ( ) ( ) ( ) cos( )n n n
n n x

n x
u x t u t X x u t

L


    

After we conduct several experiments in MATLAB, we find that the direct 

summation is very slow; the computational cost of this eigenfunction expansion method 

is extremely high in a 3-D nonhomogeneous heat equation problem.  An alternative way 

to compute the series is to take advantage of the Fast Fourier Transform (FFT).  In order 

to do so, we first change the cosine form to a combination of exponential forms.  

cos( )
2

x x

n x n x
i i

L L

x

n x e e

L

 





  

Then we even extend ( , )u x t from the domain (0, )xL to ( ,0)xL and make it 

periodic with period  2 xL  .  Figure 4 shows how to expand the domain in FFT method.  

 

0 xLxL

One Period
 

Figure 4.   Domain expansion: cosine expansion to FFT  
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So, we rewrite   u as 

0

( , ) ( )
2

( )
,   n 0

2         ( )    where     ( )    
( )

,   n<0
2

           

x x

x

n x n x
i i

L L

n
n

n
n x

i
L

n n
n n

e e
u x t u t

u t

c t e c t
u t

 










 

 
   

 
 

    





  

and then we apply FFT.  We will provide more details on how to compute the solution 

with FFT in Chapter III. 



 15

III. NUMERICAL SOLUTION FOR A TRANSIENT, ONE-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE 

ROD DUE TO A DITHERING LASER BEAM 

In this section, we review some numerical methods for solving the 1-D 

nonhomogeneous heat equation. 

A. THE CRANK-NICOLSON METHOD 

The Crank-Nicolson method is an implicit, unconditionally stable numerical 

method used to solve the heat equation. It is second-order accurate in time and second- 

order accurate in space.  In 1947, Crank and Nicolson suggested an alternative way to 

utilize centered differences scheme [7].  To illustrate the Crank-Nicolson scheme, we 

start with centered difference and return to the Taylor series expansion for 0( )f x x  and 

0( )f x x . 

   2 3

(3)( ) ( ) '( ) "( ) ( ) ...
1! 2! 3!

x xx
f x x f x f x f x f x

 
                      (Eq. 3.1) 

   2 3

(3)( ) ( ) '( ) "( ) ( ) ...
1! 2! 3!

x xx
f x x f x f x f x f x

 
                     (Eq. 3.2) 

Subtracting (Eq. 3.1) from (Eq. 3.2) yields 

 3 (3)2
( ) ( ) 2  '( ) ( ) ...

3!
f x x f x x x f x x f x          

We can get  '( )f x  by reorganizing this equation 

 
2

2 (3)

( )

( ) ( ) 1
'( ) ( ) ...

2 6
O x

f x x f x x
f x x f x

x
 

   
   

 
 

This leads to the first-order centered difference approximation  

( ) ( )
'( )

2

f x x f x x
f x

x

   



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This approximation is with truncation error 2( )O x , an order of  2
x and the 

approximation is accurate and consistent; the truncation error vanishes as 0x  . 

By adding Eq. 3.1 and Eq. 3.2, we have 

 42 (4)2
( ) ( ) 2 ( ) ( )  "( ) ( ) ...

4!
f x x f x x f x x f x x f x           

Again, we can get the second-order derivative "( )f x  by reorganizing this equation 

 

2

2

(4)
2

( )

( ) 2 ( ) ( )
 "( ) ( ) ...

( ) 12
O x

xf x x f x f x x
f x f x

x


    
  

 
 

and this leads to the second-order centered difference approximation  

2

( ) 2 ( ) ( )
 "( )

( )

f x x f x f x x
f x

x

    



 

After we understand the second-order difference approximation, we can move on 

to the Crank-Nicolson scheme. The forward difference in time of temperature 

( , )T T x t can be written as: 

( ) ( )T T t t T t

t t

   


 
 

The Crank-Nicolson method may be interpreted as the centered difference 

around  
2

t
t


 .  The error in approximating ( )

2

T t
t

t

 



is 2( )O t [7].  Thus, we discretize 

the second derivative at 
2

t
t


 with a centered difference scheme.   Since this involves 

functions evaluated at this in-between time, we take the average at  t and  t t  .  This 

yields the Crank-Nicolson scheme for 1-D homogeneous heat equation
2

2T

T T

t x
 


 

, 

1 1 1 1
1 1 1 1

2 2

2 2

2

k k k k k k k k
i i i i i i i iTT T T T T T T T

t x x

   
        

     
                               (Eq. 3.3) 
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We introduce the shorthand notation ( , ) k
i k iT x t T , which is a matrix notation 

used to discretize x  and  t , because the Crank-Nicolson scheme involves six stencil 

points rather than a simpler stable method, and three of which are at the advanced time, 

as shown in Figure 5.  We cannot directly march forward in time. Instead, we are left 

with a traditional system of equations of the form Ax b


, where x


 is the solution at the 

 1k st  time level and b


depends on the solution at the -k th  time level. Of course, it is 

not just any A , the matrix we have has a very special structure which is to be shown later. 

t t 

x x

t

x x x  

Figure 5.   Implicit Crank-Nicolson scheme [From 7]. 

Now consider a 1-D nonhomogeneous heat equation with a heat source ( , )f x t : 

2

2
( , )

T T
f x t

t x

 
 

 
     , 0 1x   

The BCs are insulated at both ends of the rod:  

0 1
0

x x

T T

x x 

 
 

 
 

The IC assumes that there is no temperature rise with respect to the ambient 

temperature: 

( ,0) 0T x   
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In this thesis, we study the case where the heat source is a dithering 1-D Gaussian beam: 

 

2

2
0

( ( ))

0( , )
cx x t

rf x t I e
 

 , 0

2
( ) sinc

t
x t x a

T


  ,  0 2

xL
x   

where 0  I is the intensity of the laser beam.  As before, we discretize this 1-D rod into n  

parts, as depicted in Figure 6: 

1
( )

2ix i x   ,     
 1 0

x
n


     1, 2,....,i n  

X10 X2 X3 Xn 1X-1 Xn+1

T-1= T1 Tn= Tn+1  

Figure 6.   Discretization of the 1-D rod 

Here in the Crank-Nicolson scheme and later in the matrix notation, the BCs are 

extended into ghost grid points 1x  and 1nx  .  However, in this finite difference method, 

the BCs link temperature at 1x  to the temperature at 1x  and the temperature at 1nx   to the 

temperature at nx .  More specifically, the BCs are 

1 1
0 1 1

( , ) ( , )
0 k kk k

x

T x t T x tT
T T

x x


 


   

 
 

1

1
1

( , ) ( , )
0     1

x

k kn k n k
n n

T x t T x tT
T T for all k

x x





    

 
 

Applying the Crank-Nicolson scheme to the heat equation with a heat 

source ( , )f x t , we obtain  

 
1 1 1 1

1 1 1 1
12 2

2 2 1
( , ) ( , )

2 2

k k k k k k k k
i i i i i i i i

i k i k

T T T T T T T T
f x t f x t

t x x

   
   



     
       
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1,2,.... 1,            0,1, 2,.......         ki n n k t k t      

Here,    1are known,  are to be found.k k
i iT T   We start with a simple case  1i  and 

rearrange this equation: 

                
1

1
1 1

1 2 1 2 1
12

1
1 1 1 12

2 2
( , ) ( , )

2 2

k kk k k k
k k

k k

T T T Tt t
T T f x t f x t

x x

T T  





     

       
  

where 1 1
k kT T   and 1 1

1 1
k kT T 
  because of the BCs.  After changing some orders, we put 

1k
iT  on the left-hand side of the equation and k

iT on the right-hand side; we get 

 1 1 1
1 2 1 1 2 1 1 1 12 2 2 2

( , ) ( , )
2 2 2 2 2

k k k k k k
k k

t t t t t
T T T T T T f x t f x t

x x x x

     


    
      

   
 

To simplify, we get 

 

 1 1
1 2 1 2 1 1 12 2 2 2

1 1 ( , ) ( , )
2 2 2 2 2

k k k k
k k

t t t t t
T T T T f x t f x t

x x x x

    


                      
 . 1Eq  

To put this in matrix form, we get 

 

1
1

2 2 1
1 2 2 2 1

1
1 1 12 2

1 2 2 2 1

  1
2 2

1 ( , ) ( , )
2 2 2

k

k

k

k kk

Tt t

x x T

Tt t t
f x t f x t

x x T

 

 




 


 

            

              

 

Likewise, when 2i   

 
1 1 11

3 2 1 3 2 12 2
2 2 12 2

2 2 1
( , ) ( , )

2 2

k k k k k kk k

k k

T T T T T TT T
f x t f x t

t x x

   



    
       

 

After changing some orders, we put 1k
iT  on the left-hand side of the equation and 

k
iT on the right-hand side 
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 

1 1 1
1 2 32 2 2

1 2 3 2 2 12 2 2

  1
2 2

1 ( , ) ( , )
2 2 2

k k k

k k k
k k

t t t
T T T

x x x

t t t t
T T T f x t f x t

x x x

  

  

  



          
             

   . 2Eq  

In matrix form, 

 

1
1

1
22 2 2

1 3 1
3 3 1

1

2 2 2 12 2 2
1 3

3 3 1

  1
2 2

1 ( , ) ( , )
2 2 2

k

k

k

k

k
k k

k

T
t t t

T
x x x

T

T
t t t t

T f x t f x t
x x x

T

  

  





 








 
                

 
                 

 

When 1i n   

 
1 1 1 1

1 1 1 2 1 2
1 1 12 2

2 2 1
( , ) ( , )

2 2

k k k k k k k k
n n n n n n n n

n k n k

T T T T T T T T
f x t f x t

t x x

   
     

  

     
       

 

Once again, we put 1k
iT  on the left-hand side of the equation and k

iT on the right 

hand side 

 

1 1 1
2 12 2 2

2 1 1 1 12 2 2

  1
2 2

1 ( , ) ( , )
2 2 2

k k k
n n n

k k k
n n n n k n k

t t t
T T T

x x x

t t t t
T T T f x t f x t

x x x

  

  

  
 

    

          
             

 . -1Eq n  

In matrix form 

 

1
2
1

12 2 2
1 3 1

3 1

2

1 1 1 12 2 2
1 3

3 1

1
2 2

1 ( , ) ( , )
2 2 2

k
n
k

n
k

n

k
n
k

n n k n k
k

n

T
t t t

T
x x x

T

T
t t t t

T f x t f x t
x x x

T

  

  






 





   




 
                

 
                 
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Finally, when i n  

 
1 1 1

1 1
1

1

2
1 1

2

2 2 1
( , ) ( , )

2 2

k k kk k
n n

k k k
n n n n n n

n k n k

T T T T TT T
f x t f x t

T

t x x

 


  
 


     

       
 

Here, 1
k k

n nT T   and 1 1
1

k k
n nT T 
  because of the BCs. 

Putting 1k
iT  on the left hand side of the equation and k

iT on the right-hand side 

leads to 

 1 1
1 1 12 2 2 2

1 1 ( , ) ( , )
2 2 2 2 2

k k k k
n n n n n k n k

t t t t t
T T T T f x t f x t

x x x x

    
  

                       
  . Eq n  

In matrix form, 

 
1

1 1
12 2 2 21

1 2 1 22 1 2 1

1 1 ( , ) ( , )
2 2 2 2 2

k k
n n

n k n kk k
n n

T Tt t t t t
f x t f x t

x x x xT T

   
 


  

                                
 

Putting all these n linear equations . 1,  . 2, ... . 1, .  Eq Eq Eq n Eq n together in matrix 

form, we arrive at  

1
1 1 11

k k
n n nn n n n nA T B T f b

      
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where 
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
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 
 
 
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
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 Note that  A  and  B are triangular matrices.  We can use the sparse matrix solver in 

MATLAB to create them and they are easily to be computed.  In MATLAB, we simply 

use 
1

\
k

T A b



 
 to find the temperature rise with respect to time. 

 Let us recall from Figure 2, the idea of a dithering laser beam heat source 

( , )f x t on a 1-D rod of Eq. 2.1 can be written differently: 

2

2

2

2

( ( ))

0 2
0 02

( , ) , 0

2
( , )  ,  ( ) sin ,  

22

c

T
T x

T

x x t

xd
c

T T
f x t x L

t x K

I Lt
f x t e x t x a x

periodd






 

 
   

 

 
     

 

                        (Eq. 3.4) 

Where  d is the standard deviation of the Gaussian heat source.  Figure 7 demonstrates 

what the final temperature rise looks like for time = 1 using the Crank-Nicolson method 

with number of points n= 200.  All the input parameters are listed in Table 1. The 

MATLAB code is attached in Appendix A. 

Input Value Unit 

T  1 m^2/s 

TK  1 W/(m*k) 

0I  1 W/m^3 

d  0.02 m 

xL  1 m 

0x  0.5 m 

a  0.25 m 

period  1 s 

Table 1.   1-D rod MATLAB input parameters for dithering laser beam 
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Figure 7.   1-D Crank-Nicolson method  

B. THE FAST FOURIER TRANSFORM (FFT) METHOD 

Recall that in (Eq. 2.10) we have shown that the solution of the 1-D 

nonhomogeneous heat equation with insulating boundary conditions can be expressed as 

eigenfunction expansion, where the eigenfunctions are cosine functions. 

Now we show how to use FFT to implement the eigenfunction expansion for the 

purpose of fast summation.  This can be achieved in several steps. 

First, we even extend the initial condition from [0,1] to [1,2] and then make it 

periodic with period 2.  After that, we map the interval[0,2]  to [0,2 ] . By doing this, the 

Fourier series will only contain cosine terms. 
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Second, we apply the discrete Fourier transform to the heat 

equation
2

2
( , )

u u
f x t

t x

 
 

 
:  

 
2

2
( , )

u u
F F F f x t

t x

           
 

where F denotes the Fourier transform operator. 

Now we need to calculate Fourier transformations of derivatives of ( , )u x t .  We 

begin by recalling the spatial Fourier transform of ( , )u x t : 

  
2

0

1
( , ) ( , ) ( , )

2
ik xF u x t u k t u x t e dx





    

Note that this is also a function of time; it is an ordinary Fourier transform with 

time t  fixed.  To obtain a Fourier transform in space, we multiply ikxe and integrate.  

Spatial Fourier transforms of time derivatives can be derived easily because the spatial 

Fourier transforms of a time derivative equals the time derivative of the Fourier 

transform: 


2 2

0 0

( , ) 1 ( , ) 1
( , ) ( , )

2 2
ik x ik xu x t u x t

F e dx u x t e dx u k t
t t t t

 
 

 
                

   

For spatial Fourier transform of spatial derivatives, the method of integrating by 

parts can be used: 


22 2

0 00

( , ) 1 ( , ) ( , ) 1
( , ) ( , )

2 2 2

xi kx
ik x ik x

x

u x t u x t u x t e
F e dx ik u x t e dx ik u k t

x x

 
  

  





              
 

 

Here, we assume 0u  as 0 or 2x  , and then the first term of this equation 

vanishes. 
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In general, the Fourier transform of the thn  derivatives of a function with respect 

to x  equals  n
ik times the Fourier transform of the function, assuming that 

( , ) 0u x t   sufficiently fast as x  approaches periodic endpoint 0 and  2x x   . 

Likewise, Fourier transforms of a second derivative can be obtained: 

   
2

2 2 2
2

( , ) ( , )
( , ) ( , )

u x t u x t
F ik F ik u k t k u k t

x x
  

              
 

Finally, we can conclude that
  2 2 2( ) ( , ) ( , )f f

du
ik u x t k u k t

dt
        .  The 

factor here is due to the fact that we map the interval [0,2]  to [0,2 ] .  Using the 

method of integrating factor and multiplying
2 2

 k te   on this equation, we find 

 2 2 2 2 2 22 2 ( , )k t k t k t f
du

e k e u e k t
dt

       

We rewrite this ODE as 

 2 2 2 2

( , )k t k t f
d

ue e k t
dt

    

Integrating both sides yields 

  2 2 2 2 2 2 2 2 2 2 ( )

0 0

( , ) ( ,0) ( , ) ( ,0) ( , )
t t

k t k t k s k t k s tf fu k t u k e e e k s ds u k e e k s ds            

Here, we make the change of variables t s   to conduct our following derivation. 

This equation becomes 

  2 2 2 2

0

( , ) ( ,0) ( , )
t

k t k fu k t u k e e k t d        
 

In order to estimate this integral, we approximate ( , )f k t  by a linear function: 

( ,0) ( , )
( , ) ( , )

f f
f f

k k t
k t k t

t
 

  
    
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Then, it follows that 

  2 2 2 2

0

( , ) ( ,0) ( , )
t

k t k fu k t u k e e k t d          
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 
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Once  ( , )u k t is found, apply the inverse discrete Fourier transform to it to 

get  ( , )u x t . 

In our MATALB code, as attached in Appendix B, t  is replaced by  dt  because in 

each step along the time direction we march dt .  The first component in 1h or 

2h corresponds to the case where 0k  .  We apply H’Lospital’s rule to find the value 

when  0k  .  More specifically, we have used the formulas: 

 
2 2

2 2

2 20 0 0

1 1 0 ( )
lim 1 lim lim

0 1

t tk
k t

k

e t e
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k

  
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  

 


  

       
 

   

2 2 2 22 2

4 4 20 0 0

1 (1 ) 1 (1 ) 0 (1 ) 0
lim lim lim

0 2 0

k t t t tk

k

tk e t e te t t e
type type

k

    

 

  
  

   

  

             
   

 



 28
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  
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Figure 8 shows the result using FFT method in MATLAB where all the input 

parameters are from Table 1.  
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Figure 8.   1-D FFT method 
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C. COMSOL MULTIPHYSICS 4.0A 

COMSOL is one of the popular computer simulation software programs used to 

model and simply translate real-world physical laws into the real world in the virtual 

form using the finite element method.  COMSOL is a commercial problem-solving tool 

that produces results quickly. However, it is more important to investigate the accuracy 

of the numerical results.  We compare the solution differences between MATALB and 

COMSOL in section D.  

Figure 9 is the result from COMSOL and there is no surprise that both results 

from MATLAB and COMSOL are very close.  The step-by-step process of creating this 

1-D dithering laser problem using (Eq. 3.4) in COMSOL is attached in Appendix C.   

 

Figure 9.   1-D COMSOL 
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D. COMPARISON ON A MODEL PROBLEM 

We compare the results from the 1-D Crank-Nicolson method and COMSOL and 

plot the relative difference in Figure 10, where the number of points is increased from 

200 to 2001.  The relative error between MATLAB and COMSOL results is about -410 , 

which is really small and tolerable.  Here, we only show the comparison between Crank-

Nicolson method in MATLAB and COMSOL, and the comparison in FFT method and 

COMSOL are also pretty similar.  After several tryouts, it is intuitive to see that the 

relative error goes down once we increase the number of points N, but it takes longer to 

do so. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
x 10

-4  Differnce between C-N Matlab & COMSOL N=2001

X

R
el

at
iv

e 
T
em

p 
di

ff
er

en
ce

 

 

Figure 10.   Relative error plot in 1-D Crank-Nicolson and COMSOL 

E. REAL PROBLEM SIMULATION (STEEL AISI 4340) 

After we have demonstrated that both MATLAB and COMSOL are giving us  

acceptable results, we can choose a specific material to simulate a real problem.  The 

material we use in our 1-D plot comparison is Steel AISI 4340, a built-in material in 

COMSOL which has the material contents listed in Table 2: 
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Property Name Value Unit 

Heat Capacity 
pC  475 J/(kg*K) 

Density   7850 Kg/(m^3) 

Thermal Conductivity 
TK  44.5 W/(m*K) 

Thermal Diffusivity 
T  T

p

K

C 
 

m^2/s 

Melting Point  1783 K 

Table 2.   Thermal property of Steel AISI 4340  

The dithering laser we deploy has the inputs in Table 3:  

Laser Input Name Value Unit 

Magnitude of Gaussian source 
0I  1.0e9 W/(m^3) 

Effective radius of Gaussian heat source d  0.02 m 

Rotating frequency Freq 1 Hz 

Laser stop time Time  1 s 

Center of rotation 
0x  0.5 m 

Rotating radius a  0.25 m 

Table 3.   1-D dithering laser input on Steel AISI 4340 

Figure 11 from MATLAB and Figure 12 from COMSOL depict the results of 

temperature rise using the contents from Table 2 and Table 3.  Both results are very close.  

Figure 12 is from the Crank-Nicolson method and the FFT method yields a very similar 

result.  It is clear that the maximum temperature rise decreases as the rotating period 

decreases; in other words, the higher the frequency is, the less the temperature rise 

increases.  At  1t s , Figure 13 shows the maximum temperature rise of the steel AISI 
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4340 versus the frequency (reciprocal of the period) of the rotating Gaussian beam from 

1 Hz to100 Hz .  It is observed that a higher frequency leads to lower the maximum 

temperature rise.  It should be pointed out that our results are consistent with earlier 

analytical studies for the semi-infinite domain [5]. 

Figure 14 shows the temperature rise as a function of time at a fixed point 

0.75x  of the material with dithering laser beam period=0.1 sec.  The temperature 

increases as the dithering laser beam moves closer to the point and the temperature 

almost stays steady as the laser beam moves away.  The overall line shape behaves as an 

increasing function of time. 

Figure 15 shows the maximum temperature rise versus frequency with two 

different heat sources 0I .  The higher 0I , the higher the temperature rise. 
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Figure 11.   Temperature rise on the material of steel AISI 4340 using the 1-D Crank-
Nicholson method   
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Figure 12.   Temperature rise on the material of steel AISI 4340 using 1-D COMSOL 
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Figure 13.   1-D maximum temperature rise of steel AISI 4340 versus the frequency of 
the dithering laser beam 
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Figure 14.   1-D  temperature change with time at a fixed point x=0.75 of steel AISI 
4340 with dithering laser beam period=0.1s 
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Figure 15.   The maximum temperature rise of steel AISI 4340 versus frequency with 
two different heat source 0I  
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IV. NUMERICAL SOLUTION FOR A TRANSIENT, TWO-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE 
FILM DUE TO A ROTATING OR DITHERING LASER BEAM 

Now we extend our work in 1-D to 2-D. 

A. THE CRANK-NICOLSON METHOD 

We start with the 2-D nonhomogeneous heat equation  

2 2

2

2 2

2 2

(( ( )) ( ( )) )

0 2
2

0 0

0 0

( , , ) ,   0 ,   0  

( , , )  ,  
2

2
( ) cos ,  

2

2
y ( ) sin ,  y

2

c c

T
T x y

T

x x t y y t

d

x
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y
c

u u u
f x y t x L y L

t x y K

I
f x y t e

d

Lt
x t x a x

period
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t y b
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




   

   
          



 
    

 
 

    
 

    (Eq. 4.1) 

(Eq. 4.1) can be illustrated as in Figure 16. The heat source ( , , )f x y t  created by the laser 

beam is illustrated in Figure 17. 
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Figure 16.   2-D schematic of the laser beam and the finite work piece 
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Figure 17.   Laser beam creates heat source as a Gaussian distribution [After 2]. 

We discretize this 2-D rectangular domain as shown in Figure 18. In order to 

facilitate our presentation, we set 1x yL L   and the thermal properties T  and TK equal 

1, thus the heat equation is simplified to the form ( , , )
u

u f x y t
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Figure 18.   Discretization of a 2-D rectangular region 
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The discretized point is denoted as ( , )i jx y , where i  goes from 1 to n and 

j varies from 1 to m . Here, n  and m  are the total number of grid points in 

x and  y respectively. More explicitly, 

 01
,   ,  1, 2,...  

2
x

i

L
x i x x i n

n

       
 

 

 01
,  ,   1, 2,...   

2
y

j

L
y j y y j m

m

       
 

 

The boundary conditions assume that the solid is insulated at the edges 

(boundaries) and the initial condition is that there is no temperature rise with respect to 

the ambient temperature initially. Thus, we have 

BCs: 
0 1

0 1

0

0

x x
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u u
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ICs: ( , ,0) 0u x y   

We introduce the shorthand notation , ( , , )k
i j i j ku u x y t . Then the Crank-Nicolson 

2-D scheme of (Eq. 4.1) becomes 
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       (Eq. 4.2) 

The BC can be satisfied by setting  
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We can rearrange the temperature at the interior grid points to form a vector 
k

u


as 

depicted in Figure 19: 
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Figure 19.   Putting the temperature of each point in a vector form
k

u


after discretization 

We will convert the linear system (Eq. 4.2) into the following matrix equation: 

1

0

= 

0

k k

k

Au Bu f b

u





 



   

   
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where A and B are the matrices to be found,  1k
u


 are unknown and  k

u


are known. 

We rewrite (Eq. 4.2) as  
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Putting 1ku  on the left-hand side of the equation, ku and f on the right-hand side, 

we obtain: 
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(Eq. 4.3) 

We start a simple case with 1,  1i j  first, 
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Using the boundary conditions ( 10,1 1,
1 1kku u  , 11,0 1,

1 1kku u  and so on), we can simplify 

this equation 
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Recall the matrix form
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. We can obtain the corresponding 

components of A and B from this equation: 
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and we will put  1 1 1 1 1( , , ) ( , , )
2 k k

t
f x y t f x y t 


 into a component of a vector function 
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When 2,  1i j  , (Eq. 4.3) becomes 
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To simplify, this is equivalent to  
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When  3,  1i j  , (Eq. 4.3) becomes 
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To simplify, this is equivalent to  
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To simplify, this is equivalent to  
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To simplify, this is equivalent to  
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To simplify, this becomes 
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Finally, when ,  i n j m  ,  (Eq. 4.3) becomes 
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We can put all the components of A and B together to obtain the two 

matrices ( , )n m n mA   and ( , )n m n mB   .  
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We use (Eq. 4.1) and the parameters in Table 4 to show the temperature rise of a 

model problem with the numerical points 128 n m  in Figure 20.  The MATLAB code 

is attached in Appendix D. 
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Input Value Unit 

T  1 m^2/s 

TK  1 W/(m*k) 

0I  1 W/m^3 

d  0.02 m 

xL  1 m 

yL  1 m 

0x  0.5 m 

a  0.25 m 

b  0.25 m 

period  1 s 

Table 4.   2-D film MATLAB input parameters for rotating laser beam 
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Figure 20.   Snapshots of the temperature rise on a film of a model problem induced by 
a rotating Gaussian beam using the 2-D Crank-Nicolson method 

B. THE FAST FOURIER TRANSFORM (FFT) METHOD 

The structures of Fast Fourier Transform in 1-D and 2-D are similar; instead of 

using fft and inverse Fast Fourier Transform ifft commands in 1-D MATALB code, the 

2-D code uses fft2 and ifft2 to carry out the computation.  Briefly speaking, one needs to 

even extend the problem from domain [0,1]x[0,1] to [0,2]x[0,2], make the problem 

periodic in both x and y direction with period 2, and then apply the Fourier transform and 

its inverse to obtain the numerical solution. Our MATLAB code is attached in Appendix 

E.  
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Figure 21 uses the input parameters from Table 4 and returns a very similar result 

to Figure 20.  The 2D FFT has a better performance than the 2-D Crank-Nicolson method. 

In other words, FFT can produce the result faster than the Crank-Nicolson method with 

the same number of numerical points.  We will discuss the details in Section D. 
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(Figure continued on next page.) 
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Figure 21.   Snapshots of the temperature rise on a film of a model problem induced by 
a rotating Gaussian beam using 2-D FFT method in 3-D view 

C. COMSOL 

Figure 22 (a) is the result from COMSOL and Figure 22 (b) is the result using the 

Crank-Nicolson method in MATALB based on (Eq. 4.1) and Table 4 with the numerical 

points  128 n m  in  x and  y direction, respectively.  The results are very close and we 

will do a point-by-point error analysis in Section D.  The detailed process of creating this 

2-D COMOSL is attached in Appendix F.  
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Figure 22.   Model problem comparison: (a) COMSOL (b) MATLAB FFT 2 method 

D. COMPARISON ON A MODEL PROBLEM  

As we have mentioned in Section B, FFT returns the solution faster than Crank-

Nicolson; the efficiency comparison is shown in Figure 23.  When N=29  points, we can 

see that FFT takes about 102 seconds but Crank-Nicolson takes more than 103 seconds to 

finish the computation.  So FFT is about ten times faster than the Crank-Nicolson method 

for this test problem. 
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Figure 23.   Efficiency plot: Crank-Nicolson 2-D method versus FFT 2-D method 

In Figure 24, by using the result from Figure 22, we compare the relative 

difference in temperature rise with respect to time at a fixed point (x=0.5, y=0.5) in 

MATALB FFT 2 method and COMSOL using number of point N=256.  The relative 

error is about 10-3 and this result is tolerable.  The relative error goes down as we increase 

the number of numerical grid points N.  
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Figure 24.   Relative error plot in 2-D FFT method and COMSOL 
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E. REAL PROBLEM SIMULATION (STEEL AISI 4340) 

We use Steel AISI 4340 as our test material with material properties from Table 2 

and the rotating laser we deploy has the following input in Table 5: 

Input Value Unit 

0I  1.0e8 W/m^3 

d  0.02 m 

xL  1 m 

yL  1 m 

0x  0.5 m 

0y  0.5 m 

a  0.25 m 

b  0.25 m 

period  1 s 

Table 5.   2-D rotating laser input on Steel AISI 4340. 

Figure 25 depicts the temperature rise at different times within one period.  It is 

observed that heat will not spread out quickly enough due to the properties of the Steel 

AISI 4340 material so the temperature at those points directly shined by the laser rise 

quickly.  However, those points far away from the points hit by laser, for instance, the 

center point (x=0.5, y=0.5), has almost no temperature rise. 



 52
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Figure 25.   Snapshots of the temperature rise on a Steel AISI 4340 film induced by a 
rotating Gaussian beam using COMOSL with period=1s 

Figure 26 shows the temperature rise as a function of time at a fixed point 

(x=0.75, y=0.5) of Steel AISI 4340 with dithering laser beam period=0.1 sec.  The 

temperature increases as the laser beam rotates close to the point and the temperature 

almost stays steady as the laser beam moves away.  The overall line shape behaves as an 

increasing function of time, as expected. 
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Figure 26.   2-D temperature change with time at a fixed point of Steel AISI 4340 with 
rotating beam period=0.1s 

The quantitative relationship between the maximum temperature rise and the 

rotating frequency at time=1s is depicted in Figure 27; the maximum temperature rise is a 

decreasing function of the frequency (reciprocal of the rotating period).  
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Figure 27.   2-D maximum temperature rise of Steel AISI 4340 versus the frequency of 
the rotating laser beam 
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V. NUMERICAL SOLUTION FOR A TRANSIENT, THREE-
DIMENSIONAL TEMPERATURE DISTRIBUTION IN A FINITE 
SOLID DUE TO A ROTATING OR DITHERING LASER BEAM 

We have already verified that COMSOL has returned a very accurate solution 

compared with other numerical methods in both 1-D and 2-D codes.  Therefore, instead 

of writing a complicated MATLAB 3-D code, we use COMSOL to obtain the 3-D 

answer.  Recall (Eq. 4.1) and impose insulated boundary conditions.  We use Steel AISI 

4340 as our test material with material properties from Table 2 and the rotating laser we 

deploy has the following input from Table 6: 

Input Value Unit 

0I  5.0e5 W/m^2 

d  0.02 m 

xL  1 m 

yL  1 m 

zL  1 m 

0x  0.5 m 

0y  0.5 m 

a  0.25 m 

b  0.25 m 

period  1 s 

Table 6.   3-D rotating laser input on Steel AISI 4340 

Figure 28 depicts the temperature rise at different times within one period.  The 

hottest spot is where the point hit instantly by the laser as in the 1-D and 2-D cases.  The 
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maximum temperature rise is 1468K.  Those points far away from the area hit by the 

laser, for instance, the center point (x=0.5, y=0.5, z=1), have little temperature rise. 

 

Figure 28.   Snapshots of the temperature rise on a Steel AISI 4340 solid induced by a 
rotating Gaussian beam using COMSOL with period=1s 

Figure 29 shows the temperature rise at a fixed point (x=0.75, y=0.5, z=1) as a 

function of time.  Figure 30 shows the maximum temperature rise of the whole domain as 

a function of time; the overall hottest spot is at (x=0.341, y=0.307, z=1) when time=0.64s 

with the rotating laser beam period=1s.  Figure 31 and Figure 32 depict the temperature 

rise at fixed time=1s in different layers.  It is observed that the heat does not spread 

downward quickly and there is almost no temperature rise 0.1m below the top surface 

shined by the laser.   After several tryouts, materials have larger values in diffusivity than 

Steel AISI 4340 can make heat spread out faster and so make the temperature rise higher 

than Steel AISI 4340.  

(a) (b) 

(d) (c) 
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Figure 29.   3-D temperature change as a function of time at a fixed point of steel AISI 
4340 with rotating laser beam period=1s 

(X=0.341,y=0.307,z=1)

 

Figure 30.   Maximum temperature as a function of time with rotating laser beam period 
=1s 
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Figure 31.   3-D temperature rise at different layers from z=0 to z=1 
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Figure 32.   Maximum temperature at different depth (a)z=1 top surface (b)z=0.99 
(c)z=0.95 (d)z=0.90 
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Figure 33 shows the maximum temperature rise at time=1s when the period is 

reduced to 0.1s; the laser beam rotates 10 cycles.  The maximum temperature rise 

decreases from 1754K of period=1s to 670K of period=0.1s. Therefore, the maximum 

temperature rise can be reduced by increasing the frequency of the rotating laser beam.   

Figure 34 shows the temperature rise at a fixed point (x=0.75, y=0.5, z=1) of 

period=0.1s as a function of time.  The overall temperature rise oscillates, and its 

envelope behaves as an increasing function of time, but its maximum temperature rise is 

smaller compared to the maximum temperature rise with period=1s, as illustrated in 

Figure 29.  Figure 35 shows the maximum temperature rise of the whole domain as a 

function of time, and its envelope behaves as an increasing function as well.  Figure 36 

depicts the quantitative relationship between the maximum temperature rise and the 

rotating frequency at time=1s.  The results agree with earlier analytical studies for the 

semi-infinite domain [5]. 

(a)

(c)

(b)

(d)

 

Figure 33.   Snapshots of the temperature rise on a Steel AISI 4340 solid induced by a 
rotating Gaussian beam using COMSOL with period=0.1s 
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Figure 34.   3-D temperature change as a function of time at a fixed point of Steel AISI 
4340 with rotating laser beam period=0.1 

 

Figure 35.   Maximum temperature as a function of time with rotating laser beam period 
=0.1s 
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Figure 36.   3-D maximum temperature rise of Steel AISI 4340 versus the frequency of 
the rotating laser beam 
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VI. CONCLUSIONS AND FUTURE WORK 

 In this thesis, both analytical and numerical solutions for describing the transient 

temperature rise induced by a moving laser in a finite domain have been developed.  We 

have exploited several methods including the eigenfunction expansion, the Crank-

Nicolson scheme, FFT and COMSOL.   

We have confirmed that the faster the laser rotates (i.e., the higher the frequency) 

the lower the temperature rise induced.  In other words, to reduce the military’s 

vulnerability to high-energy laser weapons it is possible to let the object rotate or rock to 

minimize the temperature rise.  The quantitative relationship between maximum 

temperature rise and laser beam rotation frequency can be used as a general guide for 

adjusting the speed of rotation of the object in order to prevent temperature rise from 

reaching the melting point.  

This thesis can be explored deeper in the future.  Some future potentials 

endeavors include but not limited to: 

A. Increase or decrease the effective radius of the laser beam  d  in Figure 3 

and Figure 17 to analyze how temperature rise is affected.  

B. Increase or decrease the radii a  and b  of the rotating trajectory of the 

Gaussian beam in Tables 3, 5 and 6 to analyze how maximum temperature 

rise is affected. 

C. Create 3-D MATALB codes and compare the results with COMSOL. 

D. Instead of using 00TEM  mode Gaussian distribution as the heat source 

illustrated in Figure 17, different transversal modes in a laser spot such as 

01TEM  or 11TEM , can be used to further seek the analytical and numerical 

solutions [8]. 

E. Thermal properties are assumed to be temperature dependent:  this makes 

the nonhomogeneous heat equation nonlinear, but more realistic [3].  This 
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nonlinear model can be solved without mathematical background in 

nonlinear programming using appendix G, COMSOL code for 3-D 

simulation by imposing certain materials whose thermal properties are 

temperature-dependent, such as silver [9]. 

F. In COMSOL 3-D geometry, try cylindrical coordinate and spherical 

coordinate rather than Cartesian coordinate. 

G. Conduct an experiment and see if the theoretical modeling is accurate. 
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APPENDIX A.  CRANK-NICOLSON CODE FOR 1-D SIMULATION  

N=256;             % number of numerical points in [0, 1] 
dx=1/N;             % spatial step 
x=([1:N]'-0.5)*dx;  % numerical grid 
u=zeros(N,1);       % solution at current time, u(j)=u(x(j)) 
d=0.02;             % radius of Gaussian source 
a=1.0;                % magnitude of Gaussian source 
u0=zeros(N,1);      % initial value 
u=u0; 
% 
dt=dx/8;              % time step 
T=25/256; 
m=T/dt;              % number of time steps 
t=[0:m]*dt; 
% 
r=dt/dx^2; 
% forming the matrices 
d0=[0.5; ones(N-2,1); 0.5]*r; 
d1=0.5*ones(N,1)*r; 
d_1=0.5*ones(N,1)*r; 
A=spdiags([-d_1, 1+d0, -d1],[-1,0,1],N,N); 
B=spdiags([d_1, 1-d0, d1],[-1,0,1],N,N); 
% 
y0=0.5+0.25*sin(10*2*pi*0);    % location of Gaussian source at t^{k-1} 
f0=a*exp(-(x-y0).^2/(2*d^2))/sqrt(2*pi*d^2);  % Gaussian source at t^{k-
1} 
% 
plot(x,u,'b-','linewidth',2.0) 
axis([0,1,-0.04,0.16]) 
drawnow 
for k=1:m, 
  y1=0.5+0.25*sin(10*2*pi*t(k+1));  % location of Gaussian source at t^k 
  f1=a*exp(-(x-y1).^2/(2*d^2))/sqrt(2*pi*d^2);  % Gaussian source at t^k 
  b=B*u+dt*(f0+f1)/2;               % right-hand-side of the linear eq 
for u^{k} 
  u=A\b;                            % solving the linear eq for u^{k} 
  f0=f1; 
  %pause(0.1) 
  plot(x,u,'b-','linewidth',2.0) 
  axis([0,1,-0.04,0.16]) 
  drawnow 
end 
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APPENDIX B.  FFT CODE FOR 1-D SIMULATION 

N=256;             % number of numerical points in [0, 1] 
dx=1/N;             % spatial step 
x=[0:N]'*dx;        % numerical grid 
u=zeros(N+1,1);     % solution at current time, u(j)=u(x(j)) 
d=0.02;             % radius of Gaussian source 
a=1;                % magnitude of Gaussian source 
u0=zeros(N+1,1);       % initial value 
u=u0; 
% 
dt=dx/8;              % time step 
T=25/256; 
m=T/dt;              % number of time steps 
t=[0:m]*dt; 
% 
% going to the coefficients of cosin expansion 
w=[u; u(N:-1:2)]; 
z=fft(w); 
cu=real(z(1:N+1))/N; 
r=([0:N]'*pi).^2; 
h1=[dt; (1-exp(-r(2:N+1)*dt))./r(2:N+1)]; 
h2=[0.5*dt^2; (1-(r(2:N+1)*dt+1).*exp(-r(2:N+1)*dt))./r(2:N+1).^2]; 
% 
y0=0.5+0.25*sin(10*2*pi*0);    % location of Gaussian source at t^{k-1} 
f0=a*exp(-(x-y0).^2/(2*d^2))/sqrt(2*pi*d^2);  % Gaussian source at t^{k-
1} 
w=[f0; f0(N:-1:2)]; 
z=fft(w); 
cf0=real(z(1:N+1))/N; 
% 
plot(x,u,'r-','linewidth',2.0) 
axis([0,1,-0.04,0.16]) 
drawnow 
for k=1:m, 
  y1=0.5+0.25*sin(10*2*pi*t(k+1));  % location of Gaussian source at t^k 
  f1=a*exp(-(x-y1).^2/(2*d^2))/sqrt(2*pi*d^2);  % Gaussian source at t^k 
  w=[f1; f1(N:-1:2)]; 
  z=fft(w); 
  cf1=real(z(1:N+1))/N; 
% update cu 
  cu=cu.*exp(-r*dt)+cf1.*h1+(cf0-cf1)/dt.*h2; 
  cf0=cf1; 
% going back to the function   
  z=N*[cu; cu(N:-1:2)]; 
  w=ifft(z); 
  u=real(w(1:N+1)); 
  %pause(0.1) 
  plot(x,u,'r-','linewidth',2.0) 
  axis([0,1,-0.04,0.16]) 
  drawnow 
end 
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APPENDIX C.  COMSOL CODE FOR 1-D SIMULATION 

1. Open COMSOL 4.0a with 1D and hit  

 
2.  In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then 
hit . 

 
3.  In Preset Studies, select Time Dependent and hit Finish . 
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4. Under Model Builder, right-click on Global Definitions and left-click to select 
Parameters, input Parameters as following: 

 
5. Right-click on Definitions and left click to select Variables, input Variables as 
following: 

 
6. Right-click on Geometry and left-click to add Interval.  The Left endpoint is 0 and 

the Right endpoint is 1. Left- click the build all button  to create geometry. 

 
7. Right-click on Materials and left-click on add Materials.  Make all the values in 
Material Contents equal 1. Right-click on the “line” in Graphics and left-click on it to 
select.  Make sure that “ 1 ” is under the selection. 
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8. Right-click on Heat Transfer and left-click to add Heat Source.  For General 
source Q, Select User defined and Put “f”, which is the heat source defined from the 
Variable.  

 
9.  In Initials Values, make Temperature equal 0.   
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10.  Right-click on Mesh and select Edge, in Edge under Element Size, select Custom and 

make Maximum element size equal 1/200. Then select the build all button to build 
the mesh. 

 

11. Under Study in Step, select Range button , under Entry method, select 
Number of values, start from 0 and stop at “period” which is defined in the parameters. 
Put Number of values to be 20.  
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12. Under Time-Dependent Solver, make Relative tolerance to be 1.0e-6. Left Click 

on  to compute. 

 
13. Finally, under Results, select Line Graph under 1D Plot Group and select time to be 
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1 only, we should be able to see the result like Figure 9.  

 
14.  Further data analysis can be done under Report, such as generate a movie and export 
data and further compare results with MATLAB.  
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APPENDIX D.  CRANK-NICOLSON CODE FOR 2-D SIMULATION 

N=128; % number of numerical points in x direction 
M=128; % number of numerical points in y direction 
dx=1/N;             % spatial step 
dy=1/M; 
x=([1:N]'-0.5)*dx;  % numerical grid 
y=([1:M]'-0.5)*dy; 
[xx,yy]=meshgrid(x,y); 
u=zeros(M*N,1);       % solution at current time 
d=0.02;             % radius of Gaussian source 
a=1;                % magnitude of Gaussian source 
u0=zeros(M*N,1);      % initial value 
u=u0; 
% 
dt=0.5*dx;              % time step 
m=11;              % number of time steps 
t=[0:m]*dt; 
% 
r1=dt/dx^2; 
r2=dt/dy^2; 
% 
A = sparse([],[],[],N*M,N*M); 
B = sparse([],[],[],N*M,N*M); 
%% forming the matrices 
% the bottom boundary 
k=1; 
A(k,k)=1+r1/2+r2/2; 
A(k,k+1)=-r1/2; 
A(k,k+N)=-r2/2; 
B(k,k)=1-r1/2-r2/2; 
B(k,k+1)=r1/2; 
B(k,k+N)=r2/2; 
% 
k=N; 
A(k,k)=1+r1/2+r2/2; 
A(k,k-1)=-r1/2; 
A(k,k+N)=-r2/2; 
B(k,k)=1-r1/2-r2/2; 
B(k,k-1)=r1/2; 
B(k,k+N)=r2/2; 
% 
for i=2:(N-1), 
    A(i,i)=1+r1+r2/2; 
    A(i,i-1)=-r1/2; 
    A(i,i+1)=-r1/2; 
    A(i,i+N)=-r2/2; 
    B(i,i)=1-r1-r2/2; 
    B(i,i-1)=r1/2; 
    B(i,i+1)=r1/2; 
    B(i,i+N)=r2/2; 
end 
% the middle layers 
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for j=2:(M-1), 
    for i=2:(N-1), 
        k=i+(j-1)*N; 
        A(k,k)=1+r1+r2; 
        A(k,k-1)=-r1/2; 
        A(k,k+1)=-r1/2; 
        A(k,k+N)=-r2/2; 
        A(k,k-N)=-r2/2; 
        B(k,k)=1-r1-r2; 
        B(k,k-1)=r1/2; 
        B(k,k+1)=r1/2; 
        B(k,k+N)=r2/2; 
        B(k,k-N)=r2/2; 
    end 
end 
% left boundary 
for j=2:(M-1), 
        k=1+(j-1)*N; 
        A(k,k)=1+r1/2+r2; 
        A(k,k+1)=-r1/2; 
        A(k,k+N)=-r2/2; 
        A(k,k-N)=-r2/2; 
        B(k,k)=1-r1/2-r2; 
        B(k,k+1)=r1/2; 
        B(k,k+N)=r2/2; 
        B(k,k-N)=r2/2; 
end 
% the right boundary 
for j=2:(M-1), 
        k=N+(j-1)*N; 
        A(k,k)=1+r1/2+r2; 
        A(k,k-1)=-r1/2; 
        A(k,k+N)=-r2/2; 
        A(k,k-N)=-r2/2; 
        B(k,k)=1-r1/2-r2; 
        B(k,k-1)=r1/2; 
        B(k,k+N)=r2/2; 
        B(k,k-N)=r2/2; 
end 
% the upper boundary 
k=1+N*(M-1); 
A(k,k)=1+r1/2+r2/2; 
A(k,k+1)=-r1/2; 
A(k,k-N)=-r2/2; 
B(k,k)=1-r1/2-r2/2; 
B(k,k+1)=r1/2; 
B(k,k-N)=r2/2; 
% 
k=N+N*(M-1); 
A(k,k)=1+r1/2+r2/2; 
A(k,k-1)=-r1/2; 
A(k,k-N)=-r2/2; 
B(k,k)=1-r1/2-r2/2; 
B(k,k-1)=r1/2; 
B(k,k-N)=r2/2; 



 77

% 
for i=2:(N-1), 
    k=i+N*(M-1); 
    A(k,k)=1+r1+r2/2; 
    A(k,k-1)=-r1/2; 
    A(k,k+1)=-r1/2; 
    A(k,k-N)=-r2/2; 
    B(k,k)=1-r1-r2/2; 
    B(k,k-1)=r1/2; 
    B(k,k+1)=r1/2; 
    B(k,k-N)=r2/2; 
end 
%% build the vector f  
f=zeros(N*M,m); 
f1=zeros(N,M); 
for k=1:m, 
    xc=0.5+0.25*cos(10*2*pi*t(k)); 
    yc=0.5+0.25*sin(10*2*pi*t(k)); 
    ff=a*exp(-(xx-xc).^2/(2*d^2)-(yy-yc).^2/(2*d^2))/(2*pi*d^2); 
    f(:,k)=reshape(ff,N*M,1); 
end 
figure(2) 
drawnow 
for k=1:(m-1), 
    b=B*u+dt*(f(:,k)+f(:,k+1))/2; 
    u=A\b; 
    pause(0.2) 
    temp=reshape(u,M,N); 
    h=surf(xx,yy,temp) 
    set(h,'edgecolor','none','facecolor','interp'); 
    %view(2) 
    drawnow 
end 
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APPENDIX E.  FFT CODE FOR 2-D SIMULATION 

clear 
% 
N=128;             % number of numerical points in [0, 1] 
dx=1/N;             % spatial step 
x=[0:N]'*dx;        % numerical grid 
[xa, ya]=meshgrid(x,x); 
u=zeros(N+1,N+1);     % solution at current time, u(j)=u(x(j)) 
d=0.02;             % radius of Gaussian source 
a=1;                % magnitude of Gaussian source 
u0=zeros(N+1,N+1);       % initial value 
u=u0; 
% 
dt=dx/8;              % time step 
T=12/128; 
m=T/dt;              % number of time steps 
t=[0:m]*dt; 
% 
% going to the coefficients of cosin expansion 
w=[u; u(N:-1:2,:)]; 
w=[w,w(:,N:-1:2)]; 
z=fft2(w); 
cu=real(z(1:N+1,1:N+1))/N^2; 
Na=[0:N]; 
[Nx, Ny]=meshgrid(Na, Na); 
r=(Nx*pi).^2+(Ny*pi).^2; 
r(1,1)=1; 
h1=(1-exp(-r*dt))./r; 
h1(1,1)=dt; 
h2=(1-(r*dt+1).*exp(-r*dt))./r.^2; 
h2(1,1)=0.5*dt^2; 
r(1,1)=0; 
% 
x0=0.5+0.25*cos(10*2*pi*0); 
y0=0.5+0.25*sin(10*2*pi*0);    % location of Gaussian source at t^{k-1} 
f0=a*exp(-((xa-x0).^2+(ya-y0).^2)/(2*d^2))/(2*pi*d^2);  % Gaussian 
source at t^{k-1} 
w=[f0; f0(N:-1:2,:)]; 
w=[w,w(:,N:-1:2)]; 
z=fft2(w); 
cf0=real(z(1:N+1,1:N+1))/N^2; 
% 
surf(xa, ya, u, 'edgecolor','none','facecolor','interp') 
axis([0, 1, 0, 1, -0.04,0.4]) 
caxis([0, 0.4]) 
view(3) 
drawnow 
for k=1:m, 
  x1=0.5+0.25*cos(10*2*pi*t(k+1)); 
  y1=0.5+0.25*sin(10*2*pi*t(k+1));  % location of Gaussian source at t^k 
  f1=a*exp(-((xa-x1).^2+(ya-y1).^2)/(2*d^2))/(2*pi*d^2);  % Gaussian 
source at t^k 
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  w=[f1; f1(N:-1:2,:)]; 
  w=[w,w(:,N:-1:2)]; 
  z=fft2(w); 
  cf1=real(z(1:N+1,1:N+1))/N^2; 
% update cu 
  cu=cu.*exp(-r*dt)+cf1.*h1+(cf0-cf1)/dt.*h2; 
  cf0=cf1; 
  k 
% going back to the function   
  z=N^2*[cu; cu(N:-1:2,:)]; 
  z=[z,z(:,N:-1:2)]; 
  w=ifft2(z); 
  u=real(w(1:N+1,1:N+1)); 
  %pause(0.2) 
  surf(xa, ya, u, 'edgecolor','none','facecolor','interp') 
  axis([0, 1, 0, 1, -0.04,0.4]) 
  caxis([0, 0.4]) 
  view(2) 
  drawnow 
end 
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APPENDIX F.  COMSOL CODE FOR 2-D SIMULATION 

2. Open COMSOL 4.0a with 2D and hit  

 
2.  In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then 
hit . 

 
3.  In Preset Studies, select Time Dependent and hit Finish . 
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4. Under Model Builder, right-click on Global Definitions and left-click to select 
Parameters, input Parameters as following: 

 
5. Right-click on Definitions and left-click to select Variables input Variables as 
following: 

 
6. Right-click on Geometry and left-click square and make side length 1 m. Click 

build all button  to create a square. 
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7. Right-click on Materials and left-click on add Materials, add Steel AISI 4340. 
Right-click on the “square” in Graphics and left-click on it to select. Make sure that “1” 
is under the selection. 

 

 
8. Right-click on Heat Transfer and left-click to add Heat Source.  For General 
source Q, Select User defined and Put “q”, which is the heat source defined from the 
Variable.  
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9.  In Initials Values, make Temperature equal 0.  We assume there is no temperature rise 
in the beginning.  

 
10.  Right-click on Mesh and select Mapped.  Right-click on Mapped and select Edge 
Groups. Please select domain and add each edge group. Under size, select Custom and 
make Maximum element size equal 1/64 or any 1/2^N where N is an integer to compare 

with FFT 2 method in MATLAB.  Then select build all button to build the mesh. 
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11. Under Study in Step, select Range button .  Under Entry method, select 
Number of values, start from 0 and stop at “period” which is defined in the parameters. 
Put Number of values to be 31.  
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12. Under Time-Dependent Solver, make Relative tolerance to be 1.0e-5. Left-click 

on  to compute. 

 
14. Finally, under Results, select Surface under 2D Plot Group and select time to be 1 

only, we should be able to see the result like Figure 25.  
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14.  Further data analysis can be done under Report, such as generate a movie and export 
data and further compare results with MATLAB.  



 88

THIS PAGE INTENTIONALLY LEFT BLANK 



 89

APPENDIX G.  COMSOL CODE FOR 3-D SIMULATION 

1. Open COMSOL 4.0a with 3D and hit  

 
2.  In Heat Transfer, select Heat Transfer in Solids (ht) and right-click Add selected then 
hit . 

 
3.  In preset Studies, select Time Dependent and hit Finish . 
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4. Under Model Builder, right-click on Global Definitions and left-click to select 
Parameters, input Parameters as following: 

 
5. Right-click on Definitions and left-click to select Variables.  Input Variables as 
following: 

 
6. Right-click on Geometry and left-click “Work Plane” and input 1 in z coordinate.  
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7. Right-click on Geometry under Wok Plane, select Circle.  We need to build up two 
circles.  One has radius 0.32m and the other one has radius 0.18m, both are centered at 
x=0.5m and y=0.5m.  Right-click on Geometry and add Extrude, select Reverse direction 
and input distance to be 0.05m. Right-click on Geometry and add Block with Width, 
Depth and Height all equal 1. 

 
First circle: 

 
Second circle: 

 
Extrude: 
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Add a Block: 

 
The geometry should be built like this: 
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7. Right-click on Materials and left-click on add Materials.  Add Steel AISI 4340. 
Right-click on the geometry in Graphics and left-click on it to select. Make sure that all 
the portions are selected. “ 1” , “2” and “3” should be under the selection. 

 
8. Right-click on Heat Transfer and left-click to add Boundary Heat Source.  For 
Boundary heat source Qb, enter “q”, which is the heat source defined from the Variable. 
Right click on selection 9 on Graphics and left click on it to select. 
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9.  In Initials Values, make Temperature equal 0. We assume there is no temperature rise 
in the beginning.  

 
10.  Right-click on Mesh and select Free Tetrahedral, repeat this process three times. 

 
First Free Tetrahedral mesh: selection 2 is picked and makes the predefined Element Size 
to be Extremely Fine: 
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Second Free Tetrahedral mesh: selection 3 is picked and makes the predefined Element 
Size to be Extremely Coarse: 

 
Third Free Tetrahedral mesh: selection 1 is picked and makes the predefined Element 
Size to be Extremely Coarse.  

 

Then select build all button to build the mesh. 
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11. Under Study in Step, select Range button , under Entry method, select 
Number of values, start from 0 and stop at 1. Put Number of values to be 51.  

 
12. Under Time-Dependent Solver, make Relative tolerance to be 1.0e-5. Left-click 

on  to compute.  This 3D problem may take couple hours to solve, in order to see a 
quick solution, we can make all meshes to be extremely coarse.  

 
2. Finally, under Results, select Surface under 3D Plot Group and select time to be 1 

only, we should be able to see the result like Figure 28.  
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14.  Further data analysis can be done under Report, such as generate a movie and export 
data.  We can add a Domain Probe Point under Definition to analyze the temperature rise 
as a function of time at a fixed point: 

 
Click on Probe 1D Plot Group under Results, we can plot temperature as a function of 
time at the selected point. 
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